9x^2+2x-2=22

Simple and best practice solution for 9x^2+2x-2=22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2+2x-2=22 equation:


Simplifying
9x2 + 2x + -2 = 22

Reorder the terms:
-2 + 2x + 9x2 = 22

Solving
-2 + 2x + 9x2 = 22

Solving for variable 'x'.

Reorder the terms:
-2 + -22 + 2x + 9x2 = 22 + -22

Combine like terms: -2 + -22 = -24
-24 + 2x + 9x2 = 22 + -22

Combine like terms: 22 + -22 = 0
-24 + 2x + 9x2 = 0

Begin completing the square.  Divide all terms by
9 the coefficient of the squared term: 

Divide each side by '9'.
-2.666666667 + 0.2222222222x + x2 = 0

Move the constant term to the right:

Add '2.666666667' to each side of the equation.
-2.666666667 + 0.2222222222x + 2.666666667 + x2 = 0 + 2.666666667

Reorder the terms:
-2.666666667 + 2.666666667 + 0.2222222222x + x2 = 0 + 2.666666667

Combine like terms: -2.666666667 + 2.666666667 = 0.000000000
0.000000000 + 0.2222222222x + x2 = 0 + 2.666666667
0.2222222222x + x2 = 0 + 2.666666667

Combine like terms: 0 + 2.666666667 = 2.666666667
0.2222222222x + x2 = 2.666666667

The x term is 0.2222222222x.  Take half its coefficient (0.1111111111).
Square it (0.01234567901) and add it to both sides.

Add '0.01234567901' to each side of the equation.
0.2222222222x + 0.01234567901 + x2 = 2.666666667 + 0.01234567901

Reorder the terms:
0.01234567901 + 0.2222222222x + x2 = 2.666666667 + 0.01234567901

Combine like terms: 2.666666667 + 0.01234567901 = 2.67901234601
0.01234567901 + 0.2222222222x + x2 = 2.67901234601

Factor a perfect square on the left side:
(x + 0.1111111111)(x + 0.1111111111) = 2.67901234601

Calculate the square root of the right side: 1.636768874

Break this problem into two subproblems by setting 
(x + 0.1111111111) equal to 1.636768874 and -1.636768874.

Subproblem 1

x + 0.1111111111 = 1.636768874 Simplifying x + 0.1111111111 = 1.636768874 Reorder the terms: 0.1111111111 + x = 1.636768874 Solving 0.1111111111 + x = 1.636768874 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.1111111111' to each side of the equation. 0.1111111111 + -0.1111111111 + x = 1.636768874 + -0.1111111111 Combine like terms: 0.1111111111 + -0.1111111111 = 0.0000000000 0.0000000000 + x = 1.636768874 + -0.1111111111 x = 1.636768874 + -0.1111111111 Combine like terms: 1.636768874 + -0.1111111111 = 1.5256577629 x = 1.5256577629 Simplifying x = 1.5256577629

Subproblem 2

x + 0.1111111111 = -1.636768874 Simplifying x + 0.1111111111 = -1.636768874 Reorder the terms: 0.1111111111 + x = -1.636768874 Solving 0.1111111111 + x = -1.636768874 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.1111111111' to each side of the equation. 0.1111111111 + -0.1111111111 + x = -1.636768874 + -0.1111111111 Combine like terms: 0.1111111111 + -0.1111111111 = 0.0000000000 0.0000000000 + x = -1.636768874 + -0.1111111111 x = -1.636768874 + -0.1111111111 Combine like terms: -1.636768874 + -0.1111111111 = -1.7478799851 x = -1.7478799851 Simplifying x = -1.7478799851

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.5256577629, -1.7478799851}

See similar equations:

| 10-0.08= | | 3n^2-21n-54=0 | | 4ln(4x+2)=20 | | 8x+28+2x+16=60 | | 5a-3c+20=0 | | (x-3-5i)*(x-3+5i)=0 | | 4x+3=13+9x | | X+5-11=1 | | Y=-.5x+34 | | 5y-3x+20=0 | | 10a^3b^2-58a^2b^2-84ab^2=0 | | log(2x+12)=2 | | 12.00+0.15m+10+0.25= | | 15v^4c^5+59v^3c^5-4v^2c^5=0 | | 6y-(-50)=60 | | -6a+5+7a=9-20 | | 12x^3-63x^2+60x=0 | | -6x^3+2x^2+48x=0 | | (12x^4-3x^2)+(16x^3-4x)-4(4x^2)-1=0 | | ax(2x-5)=6x^2-bx | | 4(x+2)2=36 | | 12(4y+5)=-6(6y+18) | | 12b+6=4b-20-2 | | xa+by^3=c+7 | | 9(5d-5.5)=25.5 | | log(x+12)+log(x+60)=5 | | 22x^4-52x^3+16x^2=0 | | x+4-6cx=6-5x-2 | | 5x-48=2x+30 | | b^2+60b-1600=0 | | -3x+2=1x-8 | | 0=5x^2+10x+3 |

Equations solver categories